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1 Introduction

Nowadays there seems to be an abundance of various models for concurrency.
Different models are suited for different tasks, but there is still a need to have a
unified approach to concurrency. In [6] the authors describe a general categori-
cal framework for relating various models of concurrency through special kinds
of adjunctions – coreflections. With that approach, the operations of process
algebra are seen as familiar universal constructions in category theory (like sum,
product, pullbacks)

In this report we describe the work originally presented in [2] and [7], which
is a natural extension of their categorical approach. In their work, Winskel,
Nielsen, and their co-authors develop a way to treat models of concurrency
(such as transition systems) and notions of equivalence (such as bisimulation)
through presheaves. This is different from the coalegbraic approach to transition
systems and bisimulation, which is another popular generalization.

For this report we have aimed to present the theorems and lemmas that
were partially omitted, or which proofs were omitted, in the seminal works of
Winskel and Nielsen.

The report is organized as follows. In the next section we present the es-
tablished models for concurrency and describe the categories that they form.
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2 Models for concurrency 2

The third section contains material about the so called open morphisms, mor-
phisms that satisfy a certain path-lifting property. Then, we describe the use of
presheaves, as bundles of paths glued together in a certain way, for the models
of concurrency. Finally, in the last section we touch upon some more recent
related developments: relational presheaves, that are useful for models with
algebraic structure on labels.

2 Models for concurrency

In this chapter we briefly go over main models for concurrency studied in the
report. For a broad overview please consult [6].

2.1 Transition systems
Transition systems are, perhaps, the most important model in the study of
computation. The concept of a transition system is very concrete, yet it is
general enough to model a huge array of types of systems.

Definition 1 (Transition system). A transition system is a tuple (S, i, L,→)
where

1. S is a set of states;

2. i ∈ S is an initial state;

3. L is a set of labels

4. →⊆ S × L× S is a transition relation.

Instead of writing (s, a, s′) ∈→ we often write s
a−→ s′.

Sometimes we write T : s
a−→ s′, to emphasize that transition s

a−→ s′ is a
part of the transition system T .

Definition 2. A (partial) function f : S1 +L1 → S2 + (L2 ∪⊥) is a morphism
of transitions systems T1 = (S1, i1, L1,→1), T2 = (S2, i2, L2,→2) iff

1. f is a function on the states, and a partial function on labels, i.e. f(S1) ⊆
S2, f(L1) ⊆ (L2 ∪ ⊥);

2. f preserves initial state, i.e. f(i1) = i2;

3. f respects the transition relation, i.e.

T1 : s
a−→ s′ =⇒ T2 : f(s)

f(a)−−−→ f(s′)

if f(a) is defined, and f(s) = f(s′) if f(a) is undefined.

The presence of a morphism f : T1 → T2 indicates that T2 can, in a way,
“simulate” T1.

It is easy to see that the identity function is a morphism of transition systems,
and the composition of two morphisms is a morphism. Therefore, transition
systems, together with morphisms, form a category T. By TL we denote a
subcategory of T of transition systems with the set of labels L.
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The category of the transition systems is pointed. The terminal object,
denoted by nil, is a transition system, consisting of just one state inil, without
any transitions. The terminal morphism f from a transition system T to nil is
defined as

f(s) = inil

for all states s and is undefined on labels.
Interestingly, nil is also an initial object in T. The initial morphism h from

nil to a transition system T is defined by h(inil) = iT .

2.1.1 Synchronization trees

Synchronization trees are special kinds of transition systems, that have no cycles,
and consist of reachable states. Formally, a transition system T = (S, i, L,→)
is a synchronization tree if

1. Every state s ∈ S is reachable, that is, there exists a finite sequence i
v−→∗ s

in T from the initial state i to s;

2. s
v−→∗ s =⇒ v = [], i.e., if s is reachable from s via a string of labels, then

v is empty;

3. If s′ a−→∗ s and s′′
b−→∗ s, then s′ = s′′ and a = b.

By isolating synchronization trees from the wider category of transition sys-
tems, we obtain the category S of synchronization trees, which is a full subcat-
egory of T.

2.2 Event structures
Event structures are to true concurrency what synchronization trees are to in-
terleaving concurrency. It is thus the case that we chose two main representative
models of concurrency: transition systems, and event structures.

Definition 3 (Event structure). A (labelled) event structure is a tuple (E,≤
,#, l, L) consisting of

• a carrier E, which is the set of events;

• a causal dependency partial order ≤ on E;

• a conflict symmetric irreflexive relation # on E;

• a labelling function l : E → L (sometimes, when it unambiguous, we will
leave out the labeling set L in the definition.

satisfying the following laws:

• For each e ∈ E, the set of predecessors {x | x ≤ e} of e is finite;

• For each e, e′, e′′ ∈ E, e#e′ ∧ e′ ≤ e′′ =⇒ e#e′′
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For an event structure we also define a concurrency relation co ⊆ E × E:
two events are said to be concurrent if they are not causally dependant or in
conflict

e co e′ ⇐⇒ ¬(e ≤ e′) ∧ ¬(e′ ≤ e) ∧ ¬(e#e′)

Event structures can also be defined in terms of special Petri nets, see [3] for
details. The alternative definition allows for convenient graphical representation
of event structures, and for definitions of unfoldings of Petri nets.

The concept of a “state” in an event structure is formulated as a configura-
tion.

Definition 4 (Configuration). A configuration x of an event structure (E,≤,#)
is a subset of events x ⊆ E, such that

• x is conflict free: ∀e, e′ ∈ x, ¬(e#e′);

• x is downwards closed: ∀e, e′, e ≤ e′ ∧ e′ ∈ x =⇒ e ∈ x.

Note that because of our restriction on the sets of predecessors of the events,
a configuration is necessary finite. We also introduce notation for a local con-
figuration of event e:

⌜e⌝ = {e′ ∈ E | e′ ≤ e}

Reader can notice that Pratt’s concept of a pomset (partially-ordered multi-
set) [4] is equivalent to the concept of a configuration of a labelled event struc-
ture. In addition, both pomsets and configurations can be viewed as special
event structures themselves: event structures without conflict.

Event structures form a category, in which the morphisms are defined as
following:

Definition 5. A morphism of event structures (E1,≤1,#1, l1 : E1 → L1) and
(E2,≤2,#2, l2 : E2 → L2) is a partial function f such that

• f(L1) ⊆ L2;

• f(E1) ⊆ E2;

• f preserves labels, i.e. l2 ◦ f = f ◦ l1;

• f preserves configurations, i.e. if x is a configuration of E1, then f(x) is
a configuration of E2, and f is injective on x: if e, e′ ∈ x and f(e) = f(e′)
are both defined, then e = e′.

We denote the category of event structures by E.

2.3 Subcategory of paths
Each category of models of concurrency considered here is equipped with a no-
tion of a path. A (computational) path of an object X should represent a run
of X. The path, therefore, has to contain the information about the “history”
of the run and information about the resulting state of X. For transition sys-
tems (and synchronization trees), computational paths are usually represented
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by finite ordered sequences of transitions that became (or can become) active
during the run. Categorically speaking, let BranL denote the (full) subcate-
gory of TL containing single-branch transition systems and morphism between
them. A path of X then can be represented by a morphism p : P → X, where
P is an object of BranL. The information that should be contained in the
computational path is thus divided into two parts. The object P is responsible
for size of the path and the labels of the transitions. The morphism p embeds
the successive events of P into a branch of successive events of X; therefore, p
is responsible for the shape of the path, as it is in X.

In case of event structures, the computational states are represented by
configurations, which are equivalent to pomsets. The paths subcategory of EL

is thus the category PomL of pomsets over L.
In the general setting the category containing path objects will be called a

path category, and usually we will denote it by P. It is worth noting that in our
cases (and in other examples), the inclusion P ↪→ M of a path category P into
a category of models M is full. Further in the text it will be useful to assume
that P and M shares the same common initial object (as it is the case in our
examples); however, this is not necessary for all the theorems stated below.

2.4 Relations between categories
A familiar notion of an unfolding give rises to a functor U from T to S. If
X = (S, s0, L,→X) is a transition system, then U(X) is a synchronization tree,
which states are sequences of the form ⟨s0, a1, . . . , an, sn⟩, where si ∈ S and
ai ∈ L, and si

ai+1−−−→X si+1. There is a transition labeled by an+1 between
⟨s0, a1, . . . , an, sn⟩ and ⟨s0, a1, . . . , an, sn, an+1, sn+1⟩ if sn

an+1−−−→X sn+1. It is
easy to verify that U(X) is a transition system with the initial state ⟨s0⟩.

If g : T1 → T2 is a morphism of transition systems, then U(g) is defined as

U(g)⟨s0, a1, . . . , an, sn⟩ = ⟨g(s0), g(a1), . . . , g(an), g(sn)⟩

We can easily verify that U(g) is a morphism in S.
Furthermore, U is a coreflector; so, S is a coreflective subcategory of T.

Theorem 1. The unfolding functor U is a right adjoint to the inclusion functor
I : SL → TL.

Proof. First of all, we define a unit of the adjunction, natural transformation
η : 1S → U ◦ I. For a synchronization tree X, ηX(s) is defined to be the unique
path in X from the initial state s0 to s.

Assume then that f : X → U(Y ) is a morphism in S. There exists a
morphism g : I(X) → Y in T, that makes the following diagram commute in
S:

U(I(X)) U(Y )

X

U(g)

ηX
f

Define g(s) to be the last element of the sequence f(s). We can verify that
g is indeed a morphism:
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1. g(iX0 ) = last(f(iX0 )) = last(⟨iY0 ⟩) = iY0 , where iX0 is the initial state of X,
and iY0 is the initial state of Y .

2. X : s1
a−→ s2 =⇒ U(Y ) : f(s1)

a−→ f(s2). By the definition of U , this
implies that last(f(s1))

a−→ last(f(s2)), i.e. g(s1)
a−→ g(s2).

Now it remains to prove that f = U(g) ◦ ηX . We do that by induction of
f(s).

• Base case: f(s) = ⟨iY0 ⟩. Then s = iX0 and U(g)(ηX(iX0 )) = U(g)(⟨iX0 ⟩) =
⟨g(iX0 )⟩ = ⟨last(f(iX0 ))⟩ = ⟨iY0 ⟩.

• Inductive case: f(s) = ⟨iY0 , . . . , sn⟩. Then U(g)(ηX(s)) = U(g)(⟨iX0 , . . . , s′, a, s⟩),
where ⟨iX0 , . . . , s′, a, s⟩ is the unique path from iX0 to s. Hence, U(g)(⟨iX0 , . . . , s⟩) =
⟨g(iX0 ), . . . , g(s′), a, g(s)⟩. By induction hypothesis, this is the same as
f(s′) + +⟨a, g(s)⟩ = f(s′) + +⟨a, last(f(s))⟩ = f(s′) + +⟨a, sn⟩ = f(s)

Apart from the relation between S and T, we can establish an interesting
relation between S and Bran, it’s subcategory of paths.

Theorem 2. Both inclusions BranL ↪→ SL and PomL ↪→ EL are dense.

Proof. First we show that BranL ↪→ SL is dense. An object T SL is the initial
cocone over all the objects [s], where s ∈ T and [s] is the unique path from iT
to s. To see this, consider another object T ′ of SL that is a cocone over the
same diagram.

By p[s] we denote the unique morphism from [s] to T , and by p′[s] we denote
the morphism from [s] to T ′.

[s′] T

[s]

p[s′]

p[s]

[s′] T ′

[s]

p′
[s′]

p′[s]

(1)

Then we can define a morphism f : T → T ′ as

f(x) = p′[x](x)

We can verify that it is indeed the morphism of synchronization trees:

• f(iT ) = p′[iT ](iT ) = iT ′ , since p′ is a morphism;

• If there is a step s
a−→ s′ in T , then there is an inclusion [s] ↪→ [s′] that

commutes with p[s], p[s′] and p′[s], p
′
[s′] (as in 1). So, f(s) = p′[s](s) =

p′[s′](s). Because p′[s′] is a morphism, we have p′[s′](s)
a−→ p′[s′](s

′) in T ′,
that is f(s)

a−→ f(s′).

Because the inclusions p′[x] are unique, f is unique as well.
Virtually the similar argument can be made for event structures.
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3 Open maps and bisimulation

Let’s return to our general setting. Let M be a category of models and P be
a path subcategory of M. We shall restrict our attention to a special class of
morphisms of M, that satisfy as certain path-lifting property.

Definition 6 (P-open morphism). A morphism f : X → Y is called P-open
if for all path objects P,Q ∈ P and for all morphisms p,m, q, such that the
following diagram commutes

P X

Q Y

m

p

f

q

There exist a path p′ : Q → X, such that both of the “triangles” in the
following diagram commutes

P X

Q Y

m

p

f

q

p′

i.e., p′ ◦m = p and f ◦ p′ = q.

In the category of transition systems, P-open morphisms correspond to an
interesting and familiar class of morphisms:

Proposition 1. BranL-open morphism in T are exactly bounded label-preserving1

morphisms (zig-zag morphisms).

Proof. Suppose f : X → Y is a BranL-open morphism in T. Suppose s is a
reachable state of X, and Y : f(s)

a−→ s′.
Since s is reachable, there is an inclusion p : P ↪→ X of a path object P :

iX
a1−→ s1

a2−→ . . .
an−−→ s

into X.
Because s′ is reachable in Y , there is also an inclusion q : Q ↪→ Y of a path

object Q:

f(iX) = iY
a1−→ f(s1)

a2−→ . . .
an−−→ f(s)

a−→ s′

into Y .
Let k : P → Q be a restriction of f to P . It is easy to see that q ◦ k = f ◦ p,

i.e. that the following diagram commutes.

P X

Q Y

k

p

f

q

1 Morphisms that are identities on the set of labels.
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Because f is an open morphism, there is a morphism q′ : Q → X, that makes
the following diagram commute

P X

Q Y

k

p

f

q

q′

Let z be the image of s′ ∈ Q under q′; then f(z) = s′. Furthermore,
q′(f(s)) = s, because of the commutativity of the left “triangle”. Since Q :

f(s)
a−→ s′, we get X : q′(f(s)) = s

a−→ q(s′) = z. Therefore, f is a bounded
morphism.

Conversely, let f be a bounded morphism. Let P,Q be object of BranL, s.t.
the following diagram commutes

P X

Q Y

k

p

f

q

Ultimately, Q is just a finite extension of P . By applying the condition
of the bounded morphism finitely many times, we can construct a morphism
q′ : Q → Y , s.t. q′ ◦ k = p and f ◦ q′ = q.

In the case of event structures, the correspondence might not be that straight-
forward, but we can still characterize PomL-open morphisms.

Proposition 2. If f : E → E′ is a PomL-open morphism of event structures,
and x is a configuration of E, then the restriction of f to x is an isomorphism
of pom-sets x and fx.

Proof. Assume f : E → E′ is a PomL-open morphism of event structures, and
x is a configuration of E. Then, if we view x as an event structure, there is an
inclusion x ↪→ E. Similarly for fx, we obtain an inclusion fx ↪→ E′. We obtain
a commuting square:

x E

fx E′

f f

By the openness of f , there is a morphism q : fx → E that makes the
diagram commute

x E

fx E′

f f
q

By definition of a morphism of event structures, f : x → fx is already
injective (and surjective, by definition); the commutativity of the upper square
makes sure that f is an isomorphism of x and fx.
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We can easily check that the class of P-open morphisms includes all isomor-
phisms, and is closed under composition.

Let f be an isomorphism, and let p, q,m be morphisms such that f ◦p = q◦m

P X

Q Y

m

p

f

q

f−1◦q

Then the morphism f−1 ◦ q clearly satisfies the conditions of definition 6.
Let f and g be P-open. Then g ◦ f is P-open as well.

P X

Y

Q Z

m

p

f

g

q

p′

p′′

Let p : P → X, q : Q → Z, and m : P → Q be morphisms such that
q ◦ m = (g ◦ f) ◦ p. Then, by openness of g there is a morphism p′ : Q → Y ,
such that p′ ◦m = f ◦ p and g ◦ p′ = q. Then, by openness of f there is another
morphism p′′ : Q → X, such that the both required “triangles” commute.

The notion of P-openness can also be used to define a generalized notion of
bisimulation. We say that two objects X1, X2 ∈ M are P-bisimilar if they are
connected by a span of P-open maps.

X

X1 X2

f g

In the specific cases of transition systems and event structures we can obtain
quite satisfactory characterizations for the notion of P-bisimilarity.

Theorem 3. Two transition systems are BranL-bisimilar iff they are (strongly)
bisimilar in the sense of Milner.

Proof. ⇒: if two objects X1, X2 are connected to another object Y by BranL-
open morphisms, then they are connected to Y via bounded morphisms. In that
case, the graphs of bounded morphisms are bisimulations; by the symmetry and
transitivity of bisimulation, X1 and X2 are bisimilar.

⇐: Let R be a bisimulation relation between X1 and X2. We construct a
transition system Y as follows:

• The collection of states of Y is R itself (viewed as a set).

• There is a transition (s1, s2)
a−→ (s′1, s

′
2) in Y if s1

a−→ s′1 in X1 and s2
a−→ s′2

in X2.

Clearly, the projections π1 : Y → X1 and π2 : Y → X2 are morphisms; it is
also easy to see that they are bounded morphisms. Because of proposition 1,
they are also BranL-open. Thus, X1 and X2 are BranL-bisimilar.
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In order to characterize PomL-bisimilarity between event structures, let’s
recall the definition of a history-preserving bisimulation:

Definition 7. A history-preserving bisimulation between two event structures
E1 and E2 is a set H of triples (x1, f, x2), where x1 and x2 are configurations of
E1 and E2 respectively, and f is an isomorphism between them; furthermore, H
has to satisfy the following properties: (∅, ∅, ∅) ∈ H, and whenever (x1, f, x2) ∈
H, then

1. If E1 : x1
a−→ x′

1, then E2 : x2
a−→ x′

2 for some (x′
1, f

′, x′
2) ∈ H with f ⊆ f ′.

2. If E2 : x2
a−→ x′

2, then E1 : x1
a−→ x′

1 for some (x′
1, f

′, x′
2) ∈ H with f ⊆ f ′.

The bisimulation is called strong if it further satisfies

1. (x1, f, x2) ∈ H and x′
1 ⊆ x1 for a configuration x′

1 of E1 implies (x′
1, f

′, x′
2) ∈

H for some f ′ ⊆ f and x′
2 ⊆ x2;

2. (x1, f, x2) ∈ H and x′
2 ⊆ x2 for a configuration x′

2 of E2 implies (x′
1, f

′, x′
2) ∈

H for some f ′ ⊆ f and x′
1 ⊆ x1.

Theorem 4. If two event structures are PomL-bisimilar, then they are strongly
history-preserving bisimilar.

Proof. Assume that X1 and X2 are PomL-bisimilar, that is, they are connected
via a span of open morphism from some object Y . It is suffices to show that
X1, Y and X2, Y are pairwise strong history-preserving bisimilar.

Let f : Y → E1 be a PomL-open morphism. Then we take H to be a set of
all triples (x, f ′, fx), where x is a configuration of Y , and f ′ is the restriction
of f on x; from proposition 2 we get that f ′ is an isomorphism, thus H is
well-defined.

It is clear that (∅, ∅, ∅) ∈ H. The first condition of history-preserving bisim-
ulation is fulfilled automatically, in the virtue of f being a morphism. We can
show that the second condition of history-preserving bisimulation holds as well.
Let (x, f ′, fx) ∈ H, and let E1 : fx

a−→ y for some configuration y. The inclu-
sion fx ⊆ y can be viewed as a morphism of pomsets fx ↪→ y. By m let us
denoted the composition of morphisms x

f ′

−→ fx ↪→ y. We obtain the following
commutative diagram:

x E

y E′

m f

Since f is PomL-open, there is a morphism q : y → E, that makes the
diagram commute

x E

y E′

m f
q

Then, we take x′ to be q(m(x)). By the commutativity of the lower triangle,
f(x′) = y. Therefore, the restriction f ′′ of f on x′ is an isomorphism between
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x′ and y. Hence, (x′, f ′′, y) ∈ H and the second condition of history-preserving
bisimulation is verified.

It remains to show that H is a strong history-preserving bisimulation; how-
ever, the strongness conditions are automatically satisfied due to our choice of
isomorphisms in H.

However, for the relation of P-bisimilarity to be suitable for modeling wide
range of bisimulation-like relations, clearly, it has to be reflexive, symmetric, and
transitive. The symmetry arises from the nature of the spans, and reflexivity
holds because the identity morphisms are P-open. However, it is also transitive
if the category M has pullbacks, due to the following fact.

Theorem 5. Pullbacks of P-open morphisms are P-open.

Proof. Assume we have the following pullback square

C

A B

X

g1 g2

f1 f2

where f1,f2 are P-open. It’s our aim to show that g1 and g2 are open as
well. Assume, then, that we have another commuting square with g1, where
P,Q are from P

P C

Q A B

X

m

p

g1

g2

q

f1 f2

Because both squares commute, the big square commutes as well, i.e. f2 ◦
g2◦p = f1◦q◦m. From the P-openness of f2, we obtain a morphism k : Q → B,
such that

f2 ◦ k = f1 ◦ q

and
k ◦m = g2 ◦ p

P C B

Q A X

p

m

g2

f2

q

k

f1
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Because C is the pullback of f1, f2, there exists a unique morphism h : Q →
C, such that k = g2 ◦ h, and q = g1 ◦ h.

P C B

Q A X

p

m

g2

g1 f2

q

h

k

f1

(2)

The morphism h is a good candidate for a morphism Q → C that we have to
find. We already have the commutativity of the lower square from the pullback
laws, it only remains to show that h ◦ m = p. To prove this, consider the
commuting square

P B

A X

q◦m

g2◦p

f2

f1

There exists an obvious morphism satisfying the universal property of C:
the morphism p. If we manage to show that h ◦ m also makes the diagram
below commute, then we are done, because such morphism is unique.

P

C B

A X

h◦m

g2◦p

q◦m
g1

g2

f2

f1

Firstly, g1 ◦ (h ◦ m) = q ◦ m because of the commutativity of the lower
triangle in (2). Secondly, g2 ◦ p = k ◦m (because of the commutativity of one o
the triangles in (2)), and k ◦m = g2 ◦ h ◦m.

Therefore, h ◦m = p.
The P-openness of g2 can be proven the same way.

Finally, we can see why the statement of theorem 5 implies transitivity of
P-openness. Consider three objects A,B, and C, A and B being related by
a span of P-open morphisms via Y1, and B and C being related by a span of
P-open morphisms via Y2, as in the picture

Y1 Y2

A B C

f1
f2 g1 g2

We can take a pullback of f2 and g1:
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Y1 ×B Y2

Y1 Y2

A B C

h1 h2

f1
f2 g1 g2

Then the morphism h1 and h2 are P-open; hence, f1 ◦ h1 and g2 ◦ h2 are
P-open. As a result, A and B are connected by a span of open morphisms and
are P-bisimilar.

Additionally, we will need the following theorem, which is a simple conse-
quence of the definitions.

Theorem 6. Let P be a subcategory of M, and M be a full subcategory of N.
A morphism is P-open in M iff it is P-open in N.

4 Presheaves for concurrency

A presheaf over P is a functor F : Pop → Set. The category of presheaves over
P and natural transformations, denoted as [Pop,Set], is a topos. The notion of
an open map in a topos ([1]) corresponds to the notion of P-open morphism. In
this section we will study this, and other connections between presheaves and
models of concurrency.

4.1 Canonical inclusion
Returning to our general setting, with a category of models M, and a subcat-
egory of path objects P ↪→ M, we define a canonical functor, sending objects
from M to presheaves over P:

C(X) = HomM (−, X)

C(X) sends a path object P to a set HomM (P,X) and a morphism m : P →
Q to a function − ◦ m : HomM (Q,X) → HomM (P,X). C sends morphism
A → B to natural transformations C(A) ⇒ C(B), defined as

C(f : A → B)P = f ◦ −

So, C(f)P (g : P → A) = f ◦ g : P → B. The reader may notice a strong
similarity between the canonical functor C and the Yoneda functor Y. In fact,
two concept coincide on P if P is a full subcategory of M. Yoneda functor is
full and faithful, but we cannot say the same about C, in general. However, C
is be full and faithful if the inclusion P ↪→ M is dense.

Theorem 7. Let the inclusion functor P ↪→ M be dense. Then C(X) =
HomM (−, X) : Pop → Set is full and faithful.

Proof. First, we show that C is full. Let f be a morphism between C(A) and
C(B). That is, fP : HomM (P,A) → HomM (P,B) sends an arrow P

g−→ A to
an arrow P

fP (g)−−−→ B.
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Because of the denseness, A is a limiting cocone of a diagram F : DA → M,
where DA is a subcategory of P.

A

P1 · · · Pj

ψ1 ψj

Using fP on the components of the cocone with the vertex A we can define
a cocone with the vertex B.

A B

P1 · · · Pj

ψ1
fP1

(ψ1)

fPj
(ψj)

ψj

Indeed, this produces a cocone, because of the naturality of f . To see this,
consider the following part of the cocone A:

A B

P1 P2

l

fP1 (l)

k

fP2 (m)

m

We want to show that fP2(m) ◦ k = fP1(l). Then, from naturality of f , we
get the following commutative diagram:

Hom(P1, A) Hom(P1, B)

Hom(P2, A) Hom(P2, B)

fP1

−◦k
fP2

−◦k

By chasing m ∈ Hom(P2, A) around the diagram, we get fP1(l) = fP1(m ◦
k) = fP2

(m) ◦ k.
Because A is the initial cocone, there exists a unique morphism g : A → B,

such that for all objects Q ∈ P and morphisms q : Q → A, the following diagram
commutes

A B

Q

g

q
fQ(q)

i.e., C(g)Q(q) = fQ(q) for all Q, q. So, C is full.
In order to see that C is faithful, consider two morphism f, g, f ̸= g. Then

C(f)(Id) = f ◦ Id = f ̸= g = g ◦ Id = C(g)(Id).

Because we know that both inclusions Bran ↪→ S and Pom ↪→ E are dense
(c.f. theorem 2), we immediately obtain the following:
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Proposition 3. 1. The canonical functor from S to [Branop,Set] is a full
embedding.

2. The canonical functor from E to [Pomop,Set] is a full embedding.

Transition systems T are not embedded in [Branop,Set]. For example,
consider two transition systems T1 (fig. 1) and T2 (fig. 2). Presheaves C(T1)
and C(T2) are isomorphic, while T1 and T2 clearly are not. Presheaves, as ways
of modeling concurrency, simply do not posses enough information to distinguish
between individual states, as it is the case between T1 and T2.

iT1start

s1

s2

s3

a b

a b

Fig. 1: Transition system T1

iT2start

o1

o2

o3

o3

a

b

a

b

Fig. 2: Transition system T2

However, in some sense, presheaves are richer than major models of concur-
rency, like transition systems, synchronization trees, or event strucutres. For
example, consider the category of presheaves [Branop,Set]. It contains a full
copy of S, but there are many more presheaves than synchronization trees. A
presheaf X contains the information about possible paths (values of X at objects
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from P), and information on how to glue those paths together. For example, if
X is a presheaf over Bran, and X(P ) = {a, b}, X(Q) = {c}, then we know that
there are two ways of computing path P in X, and only one way of computing
path Q. Furthermore, if P m−→ Q (i.e., Q is an extension of P ), then X(m)(c)
tells us exactly how Q extends P in X.

Intuitively, we can view additional objects in [Branop,Set] as “synchroniza-
tion forests” – collections of synchronization trees. If X is an arbitrary presheaf
over Bran, then X(nil) need not be a singleton set, containing unique morphism
from nil. This allows X to contain multiple initial states.

Some of the additional objects in [Pomop,Set] can be accounted for with
Petri nets. Consider, for example, a presheaf X, such that X(s) = {a} if s is
a pomset containing only events labeled with a., and X(s) = ∅ otherwise. This
presheaf corresponds to a Petri net consisting just of one transition a.

4.2 Presheaves and open maps
The definition of an open map in a topos applies to the category of presheaves.
Viewing P as a subcategory of [Pop,Set] (via the Yoneda embedding), it is
possible to check that the definition of an open map in [Pop,Set] coincides with
the definition of a YP-open morphism.

In fact, this point of view provides us with an instance of a general setup:
the category of presheaves is the category of models, and YP is the subcategory
of path objects.

We can establish a nice relation between open morphism in M, and open
maps in [Pop,Set].

Theorem 8. Let P be a full, dense subcategory of M, and f : X → Y be a
morphism in M. Then, f is P-open in M iff C(f) is YP-open in [Pop,Set].

Proof. Because P is a full subcategory of M,

YP = HomP(−, P ) = HomM(−, P ) = CP

for all path objects P in P. That means that the following diagram (in Cat)
commutes:

P

M [Pop,Set]

Y

C

By the theorems 6 and 7 we obtain that a morphism is P-open in M iff it is
CP-open in [Pop,Set]. Finally, as we have seen, CP = YP.

Unfortunately, a similar relation cannot be established between P-bisimulation
in M, and YP-bisimulation in [Pop,Set]. This is due to the fact that the
presheaf category contains much more objects than M. Particularly, consider
the initial presheaf ∅(−) = ∅. Any arrow from ∅(−) is trivially YP-open, be-
cause there are no possible arrows to ∅(−) (apart the identity arrow)! This
suggests that in [Pop,Set] all objects are YP-bisimilar. In order to combat this
problem, we introduce a notion of a rooted presheaf.
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4.3 Rooted presheaves
In this section we presume that the category P contains the initial object I,
which is also the initial object in M.

Definition 8. A presheaf X : Pop → Set is said to be rooted if X(I) is a
singleton set, where I is the initial object of P.

Clearly, rooted presheaves form a subcategory of [Pop,Set]. We shall de-
noted that subcategory as [Pop,Set]r. It is also clear that the image of M under
C lies in [Pop,Set]r, together with the image of P under Y. Therefore, we can
easily restate theorem 8 in terms of rooted presheaves.

Theorem 9. Let P be a full, dense subcategory of M, and f : X → Y be a
morphism in M. Then, f is P-open in M iff C(f) is YP-open in [Pop,Set]r.

We can also verify, that the initial object is preserved under the Yoneda
embedding, restricted to the category of rooted presheaves.

Proposition 4. If I is the initial object of P, then YI = Hom(−, I) is the
initial object of [Pop,Set]r.

Proof. To show that YI is initial in [Pop,Set]r, consider a rooted presheaf X.
By the Yoneda lemma, the set of natural transformations between YI and X
is isomorphic to X(I). However, because X is a rooted presheaf, X(I) is a
singleton. Therefore, for rooted presheaf X there is exactly one map from YI
to X.

In addition, the following theorem holds for the category of rooted presheaves.

Theorem 10. 1. Two synchronization trees over a common labelling set are
BranL-bisimilar iff their images under C are Y(BranL)-bisimilar in the
category of rooted presheaves over BranL.

2. Two event structures over a common labelling set are PomL-bisimilar iff
their images under C are Y(PomL)-bisimilar in the category of rooted
presheaves over PomL.

Currently, we lack the machinery to prove this theorem. We will prove
it using a roundabout: we will define a modal logic, which characterizes our
generalized notion of bisimulation for presheaves, synchronization trees, and
event structures.

Proposition 5. The category [Branop,Set]r is equivalent to S.

4.3.1 Path logic

Path formulae are defined as

ϕ := ⟨m⟩ϕ | ⟨m⟩ϕ | ¬ϕ |
∧
i∈J

ϕi

where m is a morphism from P, and J is a (possibly infinite) indexing set.
We define ⊤ as an empty conjunction, and ⊥ as ¬⊤.
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The ⟨m⟩ modality is called a “forward” modality, and ⟨m⟩ is a “backwards”
modality.

The path formulae are interpreted over paths p : P → X, where P is an
path object from P and X is an object from M. Specifically,

• p |= ⟨m⟩A, for m : P → P ′, if there exists a p′ : P ′ → X, such that
p′ ◦ m = p, and p′ |= A; i.e., if we can extend path p to path p′ via m,
such that p′ satisfies A.

• p |= ⟨m⟩A, for m : P ′ → P , if (p ◦m) |= A.

• p |=
∧
i∈J Ai if p |= Ai for all i ∈ J .

• p |= ¬A if p ̸|= A.

We say that a proposition A holds for an object X of M (denoted as X |= A),
if A holds for the initial path into X: (i : I → X) |= A.

We can define a notion of bisimulation for this logic, and prove a version of
Hennessy-Milner theorem for it.

Definition 9 (Path bisimulation). A path bisimulation between two objects
X1, X2 ∈ M is a binary relation R between paths going to X1 and X2 from the
same domain. That is, if (p1, p2) ∈ R, then p1 : P → X1 and p2 : P → X2, for
some P . Furthermore, this relation has to satisfy the following:

1. Initial paths are related. If i1 is a unique path I → X1 and i2 is a unique
path I → X2, then (i1, i2) ∈ R.

2. If (p1, p2) ∈ R, and p1 = p′1 ◦m with m being a morphism from P (i.e.,
p1 can be extended to p′1 via m),

P

X1 P ′ X2

p1 p2
m

p′1

then there is a path p′2, such that p2 = p′2 ◦m, and (p′1, p
′
2) ∈ R.

P

X1 P ′ X2

p1 p2
m

p′1 p′2

3. (Condition symmetric to the previous one)

4. Condition for path bisimulation being strong:
If (p1 : P → X1, p2 : P → X2) ∈ R and m : P ′ → P is a morphism in P,

P

X1 P ′ X2

p1 p2
m
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then (p1 ◦m, p2 ◦m) ∈ R.

P

X1 P ′ X2

p1 p2

p1◦m p2◦m

m

We say that two objects are (strongly) path-bisimilar if there exists a (strong)
path bisimulation between them.

Theorem 11. Two objects are strongly path-bisimilar iff they satisfy the same
set of path formulae.

Proof. ⇒ Let R be a strong path bisimulation between X1 and X2. We prove
that X1 and X2 satisfy the same path formulae (denoted as X1 ∼ X2) by
structural induction on the formula. But first, we strengthen the induction
hypothesis: for all p1 : P → X and p2 : P → X, such that (p1, p2) ∈ R, for all
ϕ, p1 |= ϕ ⇐⇒ p2 |= ϕ.

1. Case ϕ =
∧
j∈J Aj . Trivial, by IH.

2. Case ϕ = ¬A. Trivial, by IH.

3. Case ϕ = ⟨m⟩A for m : P → P ′. Then,

p1 |= ⟨m⟩A ⇐⇒ ∃g1 : P ′ → X1, g1 ◦m = p1

by the condition of path bisimilarity, there is a g2 : P ′ → X2, such that
g2 ◦ m = p2 and (g1, g2) ∈ R. By IH, g2 |= A, which implies that p2 |=
⟨m⟩A. The other direction is proved similarly.

4. Case ϕ = ⟨m⟩A for m : P ′ → P . Then, p1 |= ϕ ⇐⇒ (p1 ◦m) |= A. By
the strongness condition of path bisimulation, (p1 ◦ m, p2 ◦ m) ∈ R. By
IH, (p2 ◦m) |= A, so p2 |= A. The other direction is proved similarly.

⇐ We define the relation R = {(p1, p2) | ∀A.(p1 |= A ⇐⇒ p2 |= A)}, and
show it to be a strong path bisimulation.

1. Clearly, (i1, i2) ∈ R, where i1 and i2 are unique arrows from the initial
object.

2. Assume (p1, p2) ∈ R, and the following diagram commutes:

P

X1 P ′ X2

p1 p2

p′1

m

Assume, for a contradiction, that there is no such p′2, s.t. p′2 ◦ m = p2
and (p′1, p

′
2) ∈ R. If there is no morphism q : P ′ → X2 that makes the

diagram commute, then p1 |= ⟨m⟩⊤ and p2 ̸|= ⟨m⟩⊤. This contradicts the
assumption that (p1, p2) ∈ R. Therefore, we can assume that there is a
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non-empty collection of morphism {qj | j ∈ J}, that make the diagram
commute. None of them are in relation to p′1, so, by the definition of R,
there is a formula Qj for each qj in that collection, such that p′1 |= Qj

and qj ̸|= QJ . Then, p1 |= ⟨m⟩
∧
j∈J Qj , but p2 ̸|= ⟨m⟩

∧
j∈J Qj , which is

a contradiction

3. The third condition is proven similarly.

4. Assume that (p1, p2) ∈ R and m : P ′ → P . Furthermore, assume for
a contradiction, that (p1 ◦ m, p2 ◦ m) ̸∈ R. Then there is a formula A,
such that p1 ◦ m |= A and p2 ◦ m ̸|= A. Then, clearly, p1 |= ⟨m⟩A and
p2 ̸|= ⟨m⟩A.

There is an intricate relation between P-bisimulation and strong path bisim-
ulation.

Theorem 12. Let P be a subcategory of M. If objects X1, X2 of M are P-
bisimilar, then they are strong path bisimilar.

Proof. Since X1, X2 are P-bisimilar, they are connected by a span of P-open
morphisms from a common object X.

X

X1 X2

f g

Then let R be a set of paths that factors through X and f and g.

P

X

X1 X2

p

f g

Formally, (p1 : P → X1, p2 : P → X2) ∈ R iff p1 = f ◦ p and p2 = g ◦ p for
some path p : P → X.

We can verify that R is a strong path bisimulation.

1. Clearly, (i1, i2) ∈ R, where i1, i2 are unique morphisms from the initial
object.

2. Let (f ◦ p, g ◦ p) ∈ R, and q : Q → X1 is a path such that f ◦ p = q ◦m.

P

Q X

X1 X2

pm

q
f g
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Then, because f is P-open, there exists a morphism q′ : Q → X, such
that f ◦ q′ = q. So, q ◦m = f ◦ q′ ◦m.

P

Q X

X1 X2

pm

q

q′

f g

By definition of R, we get that (q, g ◦ q′) = (f ◦ q′, g ◦ q′) ∈ R.

3. The other case is proved symmetrically.

4. If p : P → X is a path, (f ◦ p, g ◦ p) ∈ R, and m : P ′ → P is a morphism
in P, then (f ◦ p ◦m, g ◦ p ◦m) is in R by construction.

An important question we may ask next, if the existence of strong path
bisimulation between objects imply P-bisimilarity. As it turns out, it does for
all the concrete models we’ve considered, and for rooted presheaves models.

Theorem 13. Let X1, X2 be two rooted presheaves from [Pop,Set]r. There is
a strong path bisimulation between X1 and X2 iff X1 and X2 are P-bisimilar.

Proof. ⇐ by theorem 12.
⇒ Let R0 be a strong path bisimulation relation between X1 and X2. We

can construct a presheaf R ↪→ X1 ×X2, by defining

R(P ) = {(p̃1, p̃2) | p1 : YP → X1, p2 : YP → X2, (p1, p2) ∈ R0}
where ·̃ is the Yoneda isomorphism between Hom[Pop,Set](YP,X) and X(P ).

R is defined on morphisms as

R(m)(p̃1, p̃2) = ( ˜p1 ◦ Ym, ˜p2 ◦ Ym)

There are natural transformations π1 : R → X1 and π2 : R → X2, which
correspond to component-wise projections. We claim that they are YP-open.

Assume the following diagram commutes

YP R

YQ X1

p

m π1

q

i.e., π1 ◦ p = q ◦ m. Via the Yoneda lemma, this is the same as saying
p̃ = (p̃1, p̃2), and p̃1 = q̃ ◦m. Because ·̃ is an isomorphism, it is the case that
p1 = q ◦m.

YP

X1 YQ X2

m
p1 p2

q
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By strong path bisimulation, there is a morphism q2 : YQ → X2, such that
q2 ◦m = p2, and (q, q2) ∈ R0.

YP

X1 YQ X2

m
p1 p2

q q2

By definition of R, it is the case that (q̃, q̃2) ∈ R(Q). By Yoneda lemma,
there is a morphism k = (̃q̃, q̃2) : YQ → R.

YP R

YQ X1

p

m π1

q

k

To say that q = π1 ◦ (̃q̃, q̃2) is to say that q̃ = (π1)Q(
˜̃
(q̃, q̃2)), which is true

by the definition of π1.
Because Y is a full embedding, m = Ys for some s : P → Q. To show that

k ◦m = p, consider the following naturality diagram:

Hom(YQ,R) R(Q)

Hom(YP,R) R(P )

−◦m=−◦Ys

·̃

R(s)

·̃

Since k ∈ Hom(YQ,R), we get that k̃ ◦m = R(s)(k̃). But

R(s)(k̃) = R(s)(
˜̃
(q̃, q̃2)) = R(s)(q̃, q̃2) = (q̃ ◦ Ys, q̃2 ◦ Ys) = (q̃ ◦m, q̃2 ◦m)

Because of the commutativity of the original diagram, q̃ ◦m = p̃1; because
q2 has been obtained from the path bisimulation condition, q̃2 ◦m = p̃2. That
is, R(s)(k̃) = (p̃1, p̃2) = p̃. Since that is also equal to k̃ ◦m, we obtain the
commutativity of the upper triangle

k ◦m = p

This concludes the proof of the YP-openness of π1. The fact that π2 is
YP-open can be shown similarly. This means that X1 and X2 are connected by
a span of open morphisms π1, π2, which means that they are YP-bisimilar.

In specific cases of synchronization trees and event structures, strong path
bisimulation also coincide with P-bisimulation.

Theorem 14. 1. Two synchronization trees X1 and X2 are strong path
bisimilar iff they are BranL-bisimilar.

2. Two event structures X1 and X2 are strong path bisimilar iff they are
PomL-bisimilar.
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The finishing touch that we need to prove theorem 10 is that strong path
bisimulation is preserved under the canonical functor.

Lemma 1. Let P be a full, dense subcategory of M. Two objects X1, X2 of
M are strongly path bisimilar iff C(X1), C(X2) are strongly path bisimilar in
[Pop,Set]r.

Proof. ⇒
Let R0 be a strong path bisimulation relation between objects X1 and X2

of M. Take R to be

R = {(Cp1, Cp2) | p1 : P → X1, p2 : P → X2, (p1, p2) ∈ R0}

We claim that R is a strong path bisimulation between C(X1) and C(X2).
First of all, because unique morphisms i1 : I → X1 and i2 : I → X2 are related
by R0, their images under C are related by R. Therefore, the unique arrows
from the initial object Y(I) = C(I) in the category of rooted presheaf to X1

and X2 are related by R, satisfying the first condition of path bisimulation.
Secondly, we note that because the inclusion P ↪→ M is dense, the canonical
functor C is full and faithful; furthermore, C is equivalent to Y, when restricted
to P. Now, consider the second condition of path bisimulation:

CP

CX1 CQ CX2

Cp1
q

Cp2

m

In this situation, Cp1 = m ◦ q. Because C is full, m = Cm′ and q = Cq′ for
some morphisms m′, q′ in M. By the faithfullness, p1 = m′ ◦ q′. By the strong
path bisimulation R0 there exists a morphism k : Q → X2, such that (m′, k) ∈
R0 and k ◦ q′ = p2. By the definition of R we have that (Cm′ = m,Ck) ∈ R,
and the following diagram commutes:

CP

CX1 CQ CX2

Cp1
q

Cp2

m Ck

which is exactly what we need for the second condition of path bisimulation
to be satisfied. The other condition can be verified in a similar fashion. The
strongness condition can be checked similarly as well.

⇐
Assume that R0 is the strong path bisimulation between C(X1) and C(X2).

Define R to be

R = {(p1, p2) | (C(p1), C(p2)) ∈ R0}

We have to verify that R is a strong path bisimulation between X1 and X2.
Clearly, if i1, i2 are the unique morphisms from I to X1, X2, then C(i1) and

C(i2) are the unique morphisms from the initial rooted presheaf to C(X1), C(X2).
Therefore, (i1, i2) ∈ R.

Assume that the following diagram commutes:
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P

X1 Q X2

p1
q

p2

m

with (p1, p2) ∈ R. Keeping in mind the fact that Y and C are equivalent on
P, we look at the image of this diagram under C.

CP

CX1 CQ CX2

Cp1
Cq

Cp2

Cm

By the functor laws, the diagram commutes. Furthermore, by definition of
R, (C(p1), C(p2)) ∈ R0. Because R0 is a strong path bisimulation, there is a
morphism k : CQ → CX2, such that (Cm, k) ∈ R0 and k ◦ Cq = Cp2. Because
C is full, k = Ck′ for some k′.

CP

CX1 CQ CX2

Cp1
Cq

Cp2

Cm Ck′

By definition of R, (m, k′) ∈ R. Using functorial laws, and the fact that C
is faithful, we “go back” from [Pop,Set]r to M, in which the following diagram
commutes:

P

X1 Q X2

p1
q

p2

m k′

This ensures that the second condition of strong path bisimulation is satis-
fied. The symmetric condition can be verified similarly. The strongness condi-
tion can be checked easily as well.

Now the proof of theorem 10 becomes easy.

Proof (of Theorem 10). Let S1, S2 be two synchronization trees. By theorem 14,
we know that S1 and S2 are BranL-bisimilar iff they are strong path-bisimilar.
By lemma 1, they are strong path-bisimilar iff their images C(S1) and C(S2)
are strong path-bisimilar. By theorem 13, C(S1) and C(S2) are strong path-
bisimilar iff they are C(BranL)-bisimilar (or, equivalently, YBranL-bisimilar).

The proof of the second clause is practically the same.

4.4 Presheaves as transition systems
The familiar construction of the category of elements, with slight modifications,
can be used to obtain a transition system of a presheaf X : Pop → Set. This
allows us to view presheaves as transition systems.
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Definition 10. A transition system el(X) for a rooted presheaf X is a defined
as following:

• The states of the transition system are of form (x, P ), where P is an object
of P, and x ∈ X(P ).

• There is a transition (x, P )
m−→ (y,Q) if m : P → Q is a morphism of P,

and X(m)(y) = x.

• The initial state is (i, I), where I is the initial object of P and i is the
unique member of X(I).

In fact, this construction el can be seen as a functor el : [Pop,Set]r → T,
which acts on morphisms f : X ⇒ Y as following:

el(f) : el(X) → el(Y )

el(f)(P, p) = (P, fP (p))

It is easy to see that el(f) is a morphism of transition systems. Let (P, p) m−→
(Q, q) be a step in el(X). That means that X(m)(q) = p. From commutativity
of the following diagram

X(P ) X(Q)

Y (P ) Y (Q)

fP fQ

X(m)

Y (m)

we obtain that Y (m)(fQ(q)) = fP (p), i.e. (P, fP (p))
m−→ (Q, fQ(q)) in Y .

Does el(f) preserve initial states? Well, el(f)(I, iX0 ) = (I, fI(i
X
0 )). But fI(i

X
0 )

is exactly iY0 (what else could it be?).
In fact, we can show that el : [Pop,Set]r → T is a full functor.

Proposition 6. If f : el(X) → el(Y ) is a morphism of transition systems, then
there is a natural transformation g : X ⇒ Y , such that el(g) = f .

Proof. Put gP (p) = π2(f(P, p)). We need to ensure the naturality of g. Consider
the following “square”

X(P ) X(Q)

Y (P ) Y (Q)

gP

X(m)

gQ

Y (m)

for a morphism m : P → Q. Let q be an element of X(Q). By “going”
left-down from X(Q) we get gP (X(m)(q)) = π2(f(P,X(m)(q))). By “going”
down-left we obtain Y (m)(gQ(q)) = Y (m)(π2(f(Q, q))).

It follows trivially from the definition of el, that there is a transition (P,X(m)(q))
m−→

(Q, q) in el(X). Because f is a morphism of transition systems, there is a
transition f(P,X(m)(q))

m−→ f(Q, q) in el(Y ). That is, Y (m)(π2(f(Q, q))) =
π2(f(P,X(m)(q))). This ensures the naturality of g.
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The fact that el is full provides us with some interesting results. We can
view [Pop,Set]r as a full subcategory of T. Then, theorem 6 tells us that a
morphism is YP-open in [Pop,Set]r iff it is el(YP)-open in T. We have a nice
alternative way of computing whether a morphism is open.

Do we have any results akin to that about bisimulation? Well, as it turns
out, P-bisimulation in the category of rooted presheaves corresponds to back-
and-forth bisimulation between transition systems.

Definition 11. A relation R between two transition systems T1 and T2 is called
a back-and-forth bisimulation if

• R is a bisimulation;

• If s1Rs2 and T1 : s′1
a−→ s1, then there is a state s′2, such that T2 : s′2

a−→ s2
and s′1Rs′2.

• If s1Rs2 and T2 : s′2
a−→ s2, then there is a state s′1, such that T1 : s′1

a−→ s1
and s′1Rs′2.

Theorem 15. Let X1, X2 be rooted presheaves. X1 and X2 are P-bisimilar iff
el(X1) and el(X2) are back-and-forth bisimilar.

Proof. By theorem 13, P-bisimulation between rooted presheaves is equivalent
to strong path bisimulation. Therefore, it suffices to verify that X1 and X2 are
strong path bisimilar iff el(X1) and el(X2) are back-and-forth-bisimilar.

⇒ Let R0 be a strong path bisimulation relation between X1 and X2. Take

R = {((P, p), (P, p′)) | (p̃, p̃′) ∈ R0}

We now verify that R is a back-and-forth bisimulation.

1. el(X1) : (P, p)
m−→ (Q, q) and (P, p)R(P, p′). Then, by definition, X1(m)(q) =

p. By the Yoneda lemma, this means that the following diagram com-
mutes:

YP

X1 YQ

p̃
Ym

q̃

Because p̃R0p̃′, there exists a map q̃′ : YQ → X2, making the following
diagram commute

YP

X1 YQ X2

p̃
Ym

p̃′

q̃ q̃′

Which means that q̃′◦Ym = p̃′, or, in terms of the Yoneda and presheaves,
X2(m)(q′) = p′. That means that there is a step (P, p′)

m−→ (Q, q′), and
(P, p′)R(Q, q′).



5 Going further: relational presheaves 27

2. The symmetric condition can be proved in the same manner.

3. Assume that el(X1) : (P, p)
m−→ (Q, q) and (Q, q)R(Q, q′). That means

that X(m)(q) = p. Via Yoneda lemma we obtain a commutative diagram

YP

X1 YQ X2

p̃
Ym

q̃ q̃′

with q̃R0q̃′. Because R0 is a strong path bisimulation, we know that
p̃ = (q̃ ◦ Ym)R0(q̃′ ◦ Ym). This immediately gives us that
el(X2) : (P, p

′)
m−→ (Q, q′), and (P, p)R(P, p′), where p̃′ = q̃′ ◦ Ym.

4. It is clear that the initial states are related.

5 Going further: relational presheaves

The approach that was considered so far in this document relies on the assump-
tion that the set of labels is a “pure set” without any structure. A general-
ization, presented by P. Sobocinśki in [5], tries to deal with this problem by
viewing transition systems as relational presheaves.

A relational presheaf is a lax contravariant functor (the precise meaning of
this term will be explained below) from a category C to the category of sets with
relations Rel. We will write [C op,Rel] for the category of relational presheaves.

Sobocinski explains the idea by starting from a more familiar coalgebraic
approach to concurrency.

Definition 12. Let F : C → C be an endofunctor. A coalgebra for F is a
morphism θ : X → F (X) for some object X of C .

In particular, we can consider an endofunctor P(A×−) : Set → Set, which
sends a set X to a powerset over A×X. Then, every coalgebra f : X → P(A×X)
over such endofunctor can be viewed as a transition system without an initial
state. There is a transition s

a−→ s′ between two states s, s′ ∈ X if (a, s′) ∈ f(s).
Conversely, every transition system without an initial state gives rise to a

powerset coalgebra.
If one wants to consider additional structure on the set of labels A, then one

should pull out the set A from being under P. This is achieved by the following
series of derivations:

f : X → P(A×X)

is equivalent to

f ′ : X → P(X)A

which is in turn equivalent to
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f ′′ : A → P(X)X

One can also note that the exponent object P(X)X is equivalent to a mor-
phism X → X in a Kleisli category of the P monad

f ′′′ : A → HomKl(P)(X,X)

We can decide to equip A with additional structure, for example, the struc-
ture of a monoid. Then A can be seen as a single-object category C, and f ′′′

can be seen as a functor

F : C → Kl(P)

Finally, we can notice that Kl(P) is just Rel – the category of sets with
relations.

This brings us to the definition that is presented in [5].

Definition 13. A relational presheaf is a lax functor F : Cop → Rel.

The laxness in the definition means that idF (X) ⊆ F (idX) and F (B)◦F (A) ⊆
F (A ◦B).

Morphisms of relational presheaves are oplax natural transformations, i.e.
ϕ : F ⇒ F ′ is a morphism of relational presheaves if F (f) ◦ϕD ⊆ F ′(f) ◦ϕC for
all objects C,D and morphisms f : C → D.

The author of [5] then goes on about showing that labeled transition sys-
tems with the monoidal structure M on labels can be represented by relational
presheaves M → Rel, and morphisms of such presheaves are exactly simulations
between transition systems.

Ordinary labeled transition system (without an initial state) over a labeling
set A can be represented as relational presheaves (A∗)op → Rel, where A∗ is the
category of strings over A. The morphisms of such presheaves are simulations
as well. In this case, the representation of ordinary LTSs are very similar to the
representation using regular presheaves.
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