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What’s in the title?

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ` ϕ only includes subformulas of ϕ.
• Semantic proof: proof by interpreting syntax in a model.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.
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The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

ϕ,ψ ∈ Prop ::= True | False | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ

Proposition represent owenership of resources Intuitionistic logicLinear logic (fragment)
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Sequent calculus

Sequent: Γ ` φ

` χ

` χ

Γ;ϕ;ψ ` χ

Γ;ϕ ∧ ψ ` χ

ΓΓ ` χ

Γ ` χ

Γ1 ` ϕ Γ2 ` ψ

Γ1 , Γ2 ` ϕ ∧ ψ

Γ1 ` ϕ Γ2 ` ψ

Γ1; Γ2 ` ϕ ∧ ψ

Γ ` χ

ΓΓ′ ` χ
Sequent: Γ ` φ

Left and right rulesStructural rules

Γ ::= ϕ | Γ ; Γ | Γ , Γ | . . .
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Sequent calculus
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Cut rule

cut
∆′ ` ψ ∆(ψ) ` ϕ

∆(∆′) ` ϕ

Intuitions:

• ψ is an “intermediate lemma”
• provability relation is transitive
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Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: ` ϕ =⇒ `cf ϕ

Why eliminate cut?

• makes the calculus analytical (subformula property): any derivation of ϕ ` ψ
only involves formula that are already present in ϕ and ψ
• important ingredient in the automated proof search toolbox
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Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

. . .

∆1 ;∆2 ` ψ1 ∧ ψ2

. . .

∆(ψ1 ∧ ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ
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Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
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Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details

• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...
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Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.

C |= ϕ =⇒ `cf ϕ

BI algebra
A BI algebra (C,≤) consists of operations >,⊥,∨,∧,→, Emp, ∗,−∗ satisfying
various laws.

Soundness: ϕ ` ψ =⇒ JϕK ≤ JψK.
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Intuition: Lindenbaum-Tarski algebra for completeness

Define [ϕ] = {ψ | ϕ a` ψ}, and [ϕ] ≤L [ψ] ⇐⇒ ϕ ` ψ.

• L = {[ϕ] | ϕ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JϕK = [ϕ].
• Completeness: suppose ϕ |= ψ.

• In particular: JϕK ≤L JψK, i.e. [ϕ] ≤L [ψ];
• Conclusion: ϕ ` ψ.

• The “real” work is to show that L is indeed a model.
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Attempt 1

What if we use `cf instead of ` in the definition of L?

Need transitivity of ≤: [ϕ] ≤ [ψ] ≤ [χ] =⇒ [ϕ] ≤ [χ]?

Same as cut elimination: ϕ `cf ψ `cf χ =⇒ ϕ `cf χ

11



Attempt 1

What if we use `cf instead of ` in the definition of L?

Need transitivity of ≤: [ϕ] ≤ [ψ] ≤ [χ] =⇒ [ϕ] ≤ [χ]?

Same as cut elimination: ϕ `cf ψ `cf χ =⇒ ϕ `cf χ

11



Attempt 1

What if we use `cf instead of ` in the definition of L?

Need transitivity of ≤: [ϕ] ≤ [ψ] ≤ [χ] =⇒ [ϕ] ≤ [χ]?

Same as cut elimination: ϕ `cf ψ `cf χ =⇒ ϕ `cf χ

11



Attempt 2

Attempted solution: use sets of predecessors.

〈ϕ〉 = {∆ | ∆ `cf ϕ} ∈ ℘(Bunch),

with the subset inclusion relation.

Note that ϕ ∈ 〈ϕ〉. Hence, 〈ϕ〉 ⊆ 〈ψ〉 implies

ϕ ∈ 〈ψ〉 ⇐⇒ ϕ `cf ψ.

ϕ `cf ϕ
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Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y )

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ
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Sum up

• Semantic proof of cut elimination through C

• More modular proof
• Extensions: structural rules, � modality.

14



Sum up

• Semantic proof of cut elimination through C
• More modular proof

• Extensions: structural rules, � modality.

14



Sum up

• Semantic proof of cut elimination through C
• More modular proof
• Extensions: structural rules, � modality.

14



Reflecting on the formalization

Coq formalization, ~650 lines specs and ~2500 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : .... }

• Setoids and setoid rewriting were helpful, useful type classes in stdpp

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop
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Thank you

Thank you for listening!

Let me know if you have questions, d.frumin@rug.nl.
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