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e BI: a logic for reasoning about (separation of) resources.

e Cut elimination: a proof of - ¢ only includes subformulas of ¢.

e Semantic proof: proof by interpreting syntax in a model.

e Formalized in Coq: axiom-free formalization at
https://github.com/co-dan/BI-cutelim.
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The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

v, € Prop :==True |False | oV | oAy | @ = 9
[Emp | o*9p | ¢ ¢

Proposition represent owenership of resources



Sequent calculus

[Sequent: I+ gb}

L o3¢ F x ko Iy
oA x INH DS oW




Sequent calculus
[Left and right rules]—/_\

Ligipx ko Iy
DoAYk x I';;TeEpAy
I'T'Fx I'kx

'Fx F;F’I—X



Sequent calculus

[Structu ral rules}

Cipsvbx Ik Iy =
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Sequent calculus

Lip et x b Tk
Lioxy b x F1el2-@AY
Tipsvkx ke Tk
DioAy b x F13T2 @AY
IsTFyx I'Fx

Ty NS A



Sequent calculus

Alp ¢ ) F x ke Tokwy
Alp ) = x I1 g2k @AY
Alps¥) Fx ke Tekvy
A(pA) F x INR RPN
AT ST Fx A() = x
A() = x AT Fx

[F:::mr;ryr,ry...}
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Theorem
Everything that is provable, is also provable without the cut rule: - ¢ = F

Why eliminate cut?

¢ makes the calculus analytical (subformula property): any derivation of o - ¢
only involves formula that are already present in ¢ and ¢

e important ingredient in the automated proof search toolbox
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Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

? ?

AN PACE R WA T A1 Apa)
A(Al ; Ag) l— (2

~ etc..
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Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details

e Well-foundedness/termination measures can get complicated

e Bl specific: the tree-like structure of bunches contribute to the complexity
For these reason, non-formalized proofs of cut elimination can be fragile and are

known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...



Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.

CEe = Fgo



Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.
CEp = Fkao

Bl algebra
A Bl algebra (C, <) consists of operations T, L, V, A, —, Emp, %, = satisfying
various laws.

Soundness: p v = [¢] < [¢].
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Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢o] = {4 | ¢ - ¢}, and [p] <, [¢] <= ¢ F ¢

o L ={[¢] | ¢ € Frml} with <. is a Bl algebra;
e Main property of £: [¢] = [¢]-
e Completeness: suppose ¢ = 9.

* In particular: [¢] <. [¢], i.e. [¢] <¢ [¥];
e Conclusion: ¢ ).

e The “real” work is to show that £ is indeed a model.
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What if we use i instead of - in the definition of £?

Need transitivity of <: [p] < [¥] < [x] = [¢] < [x]?

R

[Same as cut elimination: p ke Y Fof ¥ = o bof Xj

1"
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o) |p€eF bra?
Bl alge

| peFrml},C)a

Is ({{¢)
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Is ({{¥) | ¢ € Frml},C) a Bl algebra?
Not closed under U, N... Cannot inherit the algebra structure from p(Bunch).

Solution: close under arbitrary intersections:

C ={( (i) | I arbitrary set, o; € Frml} C p(Bunch)
iel

[The smallest set in C containing X
cI(—) : p(Bunch) — C
= @ | X < ()}

-/
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Is ({{¥) | ¢ € Frml},C) a Bl algebra?
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Is ({{¥) | ¢ € Frml},C) a Bl algebra?

Not closed under U, N... Cannot inherit the algebra structure from p(Bunch).

Solution: close under arbitrary interseq=— -
Lift operations to C:

C={(\lpi) | Iarbitrary XAY =XNY
iel XVY =d(XUY)
X*Y:d({Al ,AQ ’ Al EX,AQ EY})

cl(=) : p(Bunch) — C

cl(X) = () | X (satisfies [o] € [v] = o e )
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e Semantic proof of cut elimination through C
e More modular proof

e Extensions: structural rules, CJ modality.
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Reflecting on the formalization

Coq formalization, ~650 lines specs and ~2500 lines proof

e Good representation for C makes life easier

Record C := {
CPred :> Bunch — Prop;
CClosed : .... }

e Setoids and setoid rewriting were helpful, useful type classes in stdpp

e Turn equations A = A/(T") into inductive systems
Inductive bunch_decomp : bunch — bunch_ctx — bunch — Prop
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Thank you for listening!

Let me know if you have questions, d.frumin@rug.nl.
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