
Semantic Cut Elimination
for the Logic of Bunched Implications
(as formalized in Coq)

Dan Frumin
CPP 2022

University of Groningen

1

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ` ϕ only includes subformulas of ϕ.
• Semantic proof: proof by interpreting syntax in a model.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.

• Cut elimination: a proof of ` ϕ only includes subformulas of ϕ.
• Semantic proof: proof by interpreting syntax in a model.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ` ϕ only includes subformulas of ϕ.

• Semantic proof: proof by interpreting syntax in a model.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ` ϕ only includes subformulas of ϕ.
• Semantic proof: proof by interpreting syntax in a model.

• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ` ϕ only includes subformulas of ϕ.
• Semantic proof: proof by interpreting syntax in a model.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

ϕ,ψ ∈ Prop ::= True | False | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ

Proposition represent owenership of resources Intuitionistic logicLinear logic (fragment)

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

ϕ,ψ ∈ Prop ::= True | False | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ

| Emp | ϕ ∗ ψ | ϕ −∗ ψ

Proposition represent owenership of resources

Intuitionistic logic

Linear logic (fragment)

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

ϕ,ψ ∈ Prop ::= True | False | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ

| Emp | ϕ ∗ ψ | ϕ −∗ ψ

Proposition represent owenership of resources Intuitionistic logic

Linear logic (fragment)

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

ϕ,ψ ∈ Prop ::= True | False | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ

| Emp | ϕ ∗ ψ | ϕ −∗ ψ

Proposition represent owenership of resources

Intuitionistic logicLinear logic (fragment)

3

Sequent calculus

Sequent: Γ ` φ

` χ

` χ

Γ;ϕ;ψ ` χ

Γ;ϕ ∧ ψ ` χ

ΓΓ ` χ

Γ ` χ

Γ1 ` ϕ Γ2 ` ψ

Γ1 , Γ2 ` ϕ ∧ ψ

Γ1 ` ϕ Γ2 ` ψ

Γ1; Γ2 ` ϕ ∧ ψ

Γ ` χ

ΓΓ′ ` χ
Sequent: Γ ` φ

Left and right rulesStructural rules

Γ ::= ϕ | Γ ; Γ | Γ , Γ | . . .

4

Sequent calculus

Sequent: Γ ` φ

` χ

` χ

Γ;ϕ;ψ ` χ

Γ;ϕ ∧ ψ ` χ

Γ; Γ ` χ

Γ ` χ

Γ1 ` ϕ Γ2 ` ψ

Γ1 , Γ2 ` ϕ ∧ ψ

Γ1 ` ϕ Γ2 ` ψ

Γ1; Γ2 ` ϕ ∧ ψ

Γ ` χ

Γ; Γ′ ` χ

Sequent: Γ ` φ

Left and right rules

Structural rules

Γ ::= ϕ | Γ ; Γ | Γ , Γ | . . .

4

Sequent calculus

Sequent: Γ ` φ

` χ

` χ

Γ;ϕ ; ψ ` χ
Γ;ϕ ∧ ψ ` χ

Γ ; Γ ` χ

Γ ` χ

Γ1 ` ϕ Γ2 ` ψ

Γ1 , Γ2 ` ϕ ∧ ψ

Γ1 ` ϕ Γ2 ` ψ

Γ1 ; Γ2 ` ϕ ∧ ψ

Γ ` χ

Γ ; Γ′ ` χ

Sequent: Γ ` φ

Left and right rules

Structural rules

Γ ::= ϕ | Γ ; Γ | Γ , Γ | . . .

4

Sequent calculus

Sequent: Γ ` φ

Γ;ϕ , ψ ` χ
Γ;ϕ ∗ ψ ` χ

Γ;ϕ ; ψ ` χ
Γ;ϕ ∧ ψ ` χ

Γ ; Γ ` χ

Γ ` χ

Γ1 ` ϕ Γ2 ` ψ

Γ1 , Γ2 ` ϕ ∧ ψ

Γ1 ` ϕ Γ2 ` ψ

Γ1 ; Γ2 ` ϕ ∧ ψ

Γ ` χ

Γ ; Γ′ ` χ

Sequent: Γ ` φ

Left and right rulesStructural rules

Γ ::= ϕ | Γ ; Γ | Γ , Γ | . . .

4

Sequent calculus

Sequent: Γ ` φ

∆(ϕ , ψ) ` χ

∆(ϕ ∗ ψ) ` χ

∆(ϕ ; ψ) ` χ

∆(ϕ ∧ ψ) ` χ

∆(Γ ; Γ) ` χ

∆(Γ) ` χ

Γ1 ` ϕ Γ2 ` ψ

Γ1 , Γ2 ` ϕ ∧ ψ

Γ1 ` ϕ Γ2 ` ψ

Γ1 ; Γ2 ` ϕ ∧ ψ

∆(Γ) ` χ

∆(Γ ; Γ′) ` χ

Sequent: Γ ` φ

Left and right rulesStructural rules

Γ ::= ϕ | Γ ; Γ | Γ , Γ | . . .

4

Cut rule

cut
∆′ ` ψ ∆(ψ) ` ϕ

∆(∆′) ` ϕ

Intuitions:

• ψ is an “intermediate lemma”
• provability relation is transitive

5

Cut rule

cut
∆′ ` ψ ∆(ψ) ` ϕ

∆(∆′) ` ϕ

Intuitions:

• ψ is an “intermediate lemma”

• provability relation is transitive

5

Cut rule

cut
∆′ ` ψ ∆(ψ) ` ϕ

∆(∆′) ` ϕ

Intuitions:

• ψ is an “intermediate lemma”
• provability relation is transitive

5

Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: ` ϕ =⇒ `cf ϕ

Why eliminate cut?

• makes the calculus analytical (subformula property): any derivation of ϕ ` ψ
only involves formula that are already present in ϕ and ψ
• important ingredient in the automated proof search toolbox

6

Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: ` ϕ =⇒ `cf ϕ

Why eliminate cut?

• makes the calculus analytical (subformula property): any derivation of ϕ ` ψ
only involves formula that are already present in ϕ and ψ
• important ingredient in the automated proof search toolbox

6

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

. . .

∆1 ;∆2 ` ψ1 ∧ ψ2

. . .

∆(ψ1 ∧ ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ

7

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

?

∆1 ;∆2 ` ψ1 ∧ ψ2

?

∆(ψ1 ∧ ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ

7

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ` ψ1 ∆2 ` ψ2

∆1 ;∆2 ` ψ1 ∧ ψ2

∆(ψ1 ; ψ2) ` ϕ

∆(ψ1 ∧ ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ

7

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ` ψ1 ∆2 ` ψ2

∆1 ;∆2 ` ψ1 ∧ ψ2

∆(ψ1 ; ψ2) ` ϕ

∆(ψ1 ∧ ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ

∆2 ` ψ2

∆1 ` ψ1 ∆(ψ1 ; ψ2) ` ϕ

∆(∆1 ; ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ
7

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ` ψ1 ∆2 ` ψ2

∆1 ;∆2 ` ψ1 ∧ ψ2

?

∆(ψ1 ∧ ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ

7

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ` ψ1 ∆2 ` ψ2

∆1 ;∆2 ` ψ1 ∧ ψ2

∆(ψ1 ∧ ψ2) ; ϕ1 ` ϕ2

∆(ψ1 ∧ ψ2) ` ϕ1 → ϕ2

∆(∆1 ;∆2) ` ϕ1 → ϕ2

7

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ` ψ1 ∆2 ` ψ2

∆1 ;∆2 ` ψ1 ∧ ψ2

∆(ψ1 ∧ ψ2) ; ϕ1 ` ϕ2

∆(ψ1 ∧ ψ2) ` ϕ1 → ϕ2

∆(∆1 ;∆2) ` ϕ1 → ϕ2

∆1 ;∆2 ` ψ1 ∧ ψ2 ∆(ψ1 ∧ ψ2) ; ϕ1 ` ϕ2

∆(∆1 ;∆2) ; ϕ1 ` ϕ2

∆(∆1 ;∆2) ` ϕ1 → ϕ2

7

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

?

∆1 ;∆2 ` ψ1 ∧ ψ2

?

∆(ψ1 ∧ ψ2) ` ϕ

∆(∆1 ;∆2) ` ϕ

 etc..

7

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details

• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

8

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated

• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

8

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

8

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

8

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

8

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.

C |= ϕ =⇒ `cf ϕ

BI algebra
A BI algebra (C,≤) consists of operations >,⊥,∨,∧,→, Emp, ∗,−∗ satisfying
various laws.

Soundness: ϕ ` ψ =⇒ JϕK ≤ JψK.

9

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.

C |= ϕ =⇒ `cf ϕ

BI algebra
A BI algebra (C,≤) consists of operations >,⊥,∨,∧,→, Emp, ∗,−∗ satisfying
various laws.

Soundness: ϕ ` ψ =⇒ JϕK ≤ JψK.

9

Intuition: Lindenbaum-Tarski algebra for completeness

Define [ϕ] = {ψ | ϕ a` ψ}, and [ϕ] ≤L [ψ] ⇐⇒ ϕ ` ψ.

• L = {[ϕ] | ϕ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JϕK = [ϕ].
• Completeness: suppose ϕ |= ψ.

• In particular: JϕK ≤L JψK, i.e. [ϕ] ≤L [ψ];
• Conclusion: ϕ ` ψ.

• The “real” work is to show that L is indeed a model.

10

Intuition: Lindenbaum-Tarski algebra for completeness

Define [ϕ] = {ψ | ϕ a` ψ}, and [ϕ] ≤L [ψ] ⇐⇒ ϕ ` ψ.

• L = {[ϕ] | ϕ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JϕK = [ϕ].

• Completeness: suppose ϕ |= ψ.

• In particular: JϕK ≤L JψK, i.e. [ϕ] ≤L [ψ];
• Conclusion: ϕ ` ψ.

• The “real” work is to show that L is indeed a model.

10

Intuition: Lindenbaum-Tarski algebra for completeness

Define [ϕ] = {ψ | ϕ a` ψ}, and [ϕ] ≤L [ψ] ⇐⇒ ϕ ` ψ.

• L = {[ϕ] | ϕ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JϕK = [ϕ].
• Completeness: suppose ϕ |= ψ.

• In particular: JϕK ≤L JψK, i.e. [ϕ] ≤L [ψ];
• Conclusion: ϕ ` ψ.

• The “real” work is to show that L is indeed a model.

10

Intuition: Lindenbaum-Tarski algebra for completeness

Define [ϕ] = {ψ | ϕ a` ψ}, and [ϕ] ≤L [ψ] ⇐⇒ ϕ ` ψ.

• L = {[ϕ] | ϕ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JϕK = [ϕ].
• Completeness: suppose ϕ |= ψ.

• In particular: JϕK ≤L JψK, i.e. [ϕ] ≤L [ψ];

• Conclusion: ϕ ` ψ.

• The “real” work is to show that L is indeed a model.

10

Intuition: Lindenbaum-Tarski algebra for completeness

Define [ϕ] = {ψ | ϕ a` ψ}, and [ϕ] ≤L [ψ] ⇐⇒ ϕ ` ψ.

• L = {[ϕ] | ϕ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JϕK = [ϕ].
• Completeness: suppose ϕ |= ψ.

• In particular: JϕK ≤L JψK, i.e. [ϕ] ≤L [ψ];
• Conclusion: ϕ ` ψ.

• The “real” work is to show that L is indeed a model.

10

Intuition: Lindenbaum-Tarski algebra for completeness

Define [ϕ] = {ψ | ϕ a` ψ}, and [ϕ] ≤L [ψ] ⇐⇒ ϕ ` ψ.

• L = {[ϕ] | ϕ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JϕK = [ϕ].
• Completeness: suppose ϕ |= ψ.

• In particular: JϕK ≤L JψK, i.e. [ϕ] ≤L [ψ];
• Conclusion: ϕ ` ψ.

• The “real” work is to show that L is indeed a model.

10

Attempt 1

What if we use `cf instead of ` in the definition of L?

Need transitivity of ≤: [ϕ] ≤ [ψ] ≤ [χ] =⇒ [ϕ] ≤ [χ]?

Same as cut elimination: ϕ `cf ψ `cf χ =⇒ ϕ `cf χ

11

Attempt 1

What if we use `cf instead of ` in the definition of L?

Need transitivity of ≤: [ϕ] ≤ [ψ] ≤ [χ] =⇒ [ϕ] ≤ [χ]?

Same as cut elimination: ϕ `cf ψ `cf χ =⇒ ϕ `cf χ

11

Attempt 1

What if we use `cf instead of ` in the definition of L?

Need transitivity of ≤: [ϕ] ≤ [ψ] ≤ [χ] =⇒ [ϕ] ≤ [χ]?

Same as cut elimination: ϕ `cf ψ `cf χ =⇒ ϕ `cf χ

11

Attempt 2

Attempted solution: use sets of predecessors.

〈ϕ〉 = {∆ | ∆ `cf ϕ} ∈ ℘(Bunch),

with the subset inclusion relation.

Note that ϕ ∈ 〈ϕ〉. Hence, 〈ϕ〉 ⊆ 〈ψ〉 implies

ϕ ∈ 〈ψ〉 ⇐⇒ ϕ `cf ψ.

ϕ `cf ϕ

12

Attempt 2

Attempted solution: use sets of predecessors.

〈ϕ〉 = {∆ | ∆ `cf ϕ} ∈ ℘(Bunch),

with the subset inclusion relation.

Note that ϕ ∈ 〈ϕ〉. Hence, 〈ϕ〉 ⊆ 〈ψ〉 implies

ϕ ∈ 〈ψ〉 ⇐⇒ ϕ `cf ψ.

ϕ `cf ϕ

12

Attempt 2

Attempted solution: use sets of predecessors.

〈ϕ〉 = {∆ | ∆ `cf ϕ} ∈ ℘(Bunch),

with the subset inclusion relation.

Note that ϕ ∈ 〈ϕ〉. Hence, 〈ϕ〉 ⊆ 〈ψ〉 implies

ϕ ∈ 〈ψ〉 ⇐⇒ ϕ `cf ψ.

ϕ `cf ϕ

12

Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ

13

Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ

13

Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ

13

Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ

13

Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ

13

Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ

13

Attempt 3

Is ({〈ϕ〉 | ϕ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

Solution: close under arbitrary intersections:

C = {
⋂
i∈I
〈ϕi〉 | I arbitrary set, ϕi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch)→ C

cl(X) =
⋂
{〈ϕ〉 | X ⊆ 〈ϕ〉}

The smallest set in C containing X

Lift operations to C:
X ∧ Y = X ∩ Y
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y })

Satisfies JϕK ⊆ JψK =⇒ ϕ `cf ψ

13

Sum up

• Semantic proof of cut elimination through C

• More modular proof
• Extensions: structural rules, � modality.

14

Sum up

• Semantic proof of cut elimination through C
• More modular proof

• Extensions: structural rules, � modality.

14

Sum up

• Semantic proof of cut elimination through C
• More modular proof
• Extensions: structural rules, � modality.

14

Reflecting on the formalization

Coq formalization, ~650 lines specs and ~2500 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Setoids and setoid rewriting were helpful, useful type classes in stdpp

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

15

Reflecting on the formalization

Coq formalization, ~650 lines specs and ~2500 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Setoids and setoid rewriting were helpful, useful type classes in stdpp

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

15

Reflecting on the formalization

Coq formalization, ~650 lines specs and ~2500 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Setoids and setoid rewriting were helpful, useful type classes in stdpp

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

15

Reflecting on the formalization

Coq formalization, ~650 lines specs and ~2500 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Setoids and setoid rewriting were helpful, useful type classes in stdpp

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

15

Thank you

Thank you for listening!

Let me know if you have questions, d.frumin@rug.nl.

16

mailto:d.frumin@rug.nl

