Semantic Cut Elimination for the Logic of Bunched Implications

(as formalized in Coq)

Dan Frumin

CPP 2022

University of Groningen

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

Semantic cut elimination for the logic of **Bunched Implications**, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.

2

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

- BI: a logic for reasoning about (separation of) resources.
- Cut elimination: a proof of $\vdash \varphi$ only includes subformulas of φ .

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

- BI: a logic for reasoning about (separation of) resources.
- Cut elimination: a proof of $\vdash \varphi$ only includes subformulas of φ .
- Semantic proof: proof by interpreting syntax in a model.

Semantic cut elimination for the logic of Bunched Implications, formalized in Coq.

- BI: a logic for reasoning about (separation of) resources.
- Cut elimination: a proof of $\vdash \varphi$ only includes subformulas of φ .
- Semantic proof: proof by interpreting syntax in a model.
- Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

BI freely combines intuitionistic and linear connectives:

$$\varphi, \psi \in \textit{Prop} ::= \mathsf{True} \mid \mathsf{False} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \varphi \rightarrow \psi$$

BI freely combines intuitionistic and linear connectives:

$$\varphi,\psi\in \textit{Prop}::= \mathsf{True} \mid \mathsf{False} \mid \varphi \vee \psi \mid \varphi \wedge \psi \mid \varphi \rightarrow \psi$$

$$\mid \mathsf{Emp} \mid \ \varphi \ast \psi \ \mid \ \varphi \rightarrow \psi$$

$$\mathsf{Intuitionistic logic}$$

BI freely combines intuitionistic and linear connectives:

$$\varphi, \psi \in \textit{Prop} ::= \mathsf{True} \mid \mathsf{False} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \varphi \rightarrow \psi$$

$$\mid \mathsf{Emp} \mid \varphi \ast \psi \mid \varphi \twoheadrightarrow \psi$$

$$\vdash \mathsf{Linear logic (fragment)}$$

3

BI freely combines intuitionistic and linear connectives:

$$\varphi, \psi \in \textit{Prop} ::= \mathsf{True} \mid \mathsf{False} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \varphi \rightarrow \psi$$

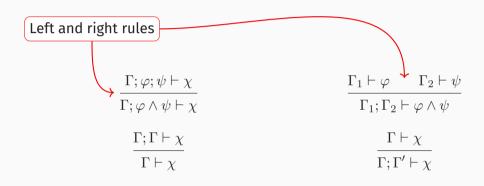
$$\mid \mathsf{Emp} \mid \ \varphi \ast \psi \ \mid \ \varphi \twoheadrightarrow \psi$$

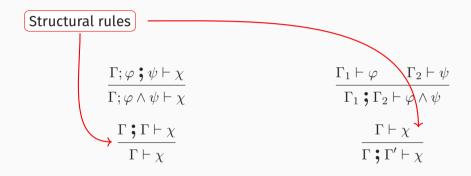
Proposition represent owenership of resources

Sequent:
$$\Gamma dash \phi$$

$$\frac{\Gamma;\varphi;\psi\vdash\chi}{\Gamma;\varphi\land\psi\vdash\chi}$$

$$\frac{\Gamma_1 \vdash \varphi \qquad \Gamma_2 \vdash \psi}{\Gamma_1; \Gamma_2 \vdash \varphi \land \psi}$$





$$\frac{\Gamma; \varphi , \psi \vdash \chi}{\Gamma; \varphi * \psi \vdash \chi}$$

$$\frac{\Gamma;\varphi\ \boldsymbol{,}\ \psi\vdash\chi}{\Gamma;\varphi\wedge\psi\vdash\chi}$$

$$\frac{\Gamma \ ; \Gamma \vdash \chi}{\Gamma \vdash \chi}$$

$$\frac{\Gamma_1 \vdash \varphi \qquad \Gamma_2 \vdash \psi}{\Gamma_1 \cdot \bullet \Gamma_2 \vdash \varphi \land \psi}$$

$$\frac{\Gamma_1 \vdash \varphi \qquad \Gamma_2 \vdash \psi}{\Gamma_1 \ ; \Gamma_2 \vdash \varphi \land \psi}$$

$$\frac{\Gamma \vdash \chi}{\Gamma \; ; \; \Gamma' \vdash \chi}$$

$$\frac{\Delta(\varphi \bullet \psi) \vdash \chi}{\Delta(\varphi * \psi) \vdash \chi}$$

$$\frac{\Delta(\varphi \; ; \; \psi) \vdash \chi}{\Delta(\varphi \land \psi) \vdash \chi}$$

$$\frac{\Delta(\Gamma \ ; \Gamma) \vdash \chi}{\Delta(\Gamma) \vdash \chi}$$

$$\frac{\Gamma_1 \vdash \varphi \qquad \Gamma_2 \vdash \psi}{\Gamma_1 \cdot \mathbf{9} \ \Gamma_2 \vdash \varphi \land \psi}$$

$$\frac{\Gamma_1 \vdash \varphi \qquad \Gamma_2 \vdash \psi}{\Gamma_1 \; ; \; \Gamma_2 \vdash \varphi \land \psi}$$

$$\frac{\Delta(\Gamma) \vdash \chi}{\Delta(\Gamma \ ; \Gamma') \vdash \chi}$$

$$\Gamma ::= \varphi \mid \Gamma ; \Gamma \mid \Gamma ; \Gamma \mid \dots$$

Cut rule

$$\frac{\Delta' \vdash \psi \qquad \Delta(\psi) \vdash \varphi}{\Delta(\Delta') \vdash \varphi}$$

Cut rule

$$\frac{\Delta' \vdash \psi \qquad \Delta(\psi) \vdash \varphi}{\Delta(\Delta') \vdash \varphi}$$

Intuitions:

ullet ψ is an "intermediate lemma"

Cut rule

$$\frac{\text{CUT}}{\Delta' \vdash \psi \qquad \Delta(\psi) \vdash \varphi} \frac{\Delta(\Delta') \vdash \varphi}{\Delta(\Delta') \vdash \varphi}$$

Intuitions:

- ψ is an "intermediate lemma"
- provability relation is transitive

Theorem

Everything that is provable, is also provable without the cut rule: $\vdash \varphi \implies \vdash_{\sf cf} \varphi$

Theorem

Everything that is provable, is also provable without the cut rule: $\vdash \varphi \implies \vdash_{\sf cf} \varphi$

Why eliminate cut?

- makes the calculus analytical (subformula property): any derivation of $\varphi \vdash \psi$ only involves formula that are already present in φ and ψ
- important ingredient in the automated proof search toolbox

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{\Delta_1; \Delta_2 \vdash \psi_1 \land \psi_2}{\Delta(\Delta_1; \Delta_2) \vdash \varphi} \frac{\Delta(\psi_1 \land \psi_2) \vdash \varphi}{\Delta(\Delta_1; \Delta_2) \vdash \varphi}$$

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{?}{\frac{\Delta_1 ; \Delta_2 \vdash \psi_1 \land \psi_2}{\Delta(\Delta_1 ; \Delta_2) \vdash \varphi}} \frac{?}{\Delta(\psi_1 \land \psi_2) \vdash \varphi}$$

7

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{\Delta_1 \vdash \psi_1 \qquad \Delta_2 \vdash \psi_2}{\Delta_1 \; ; \; \Delta_2 \vdash \psi_1 \land \psi_2} \quad \frac{\Delta(\psi_1 \; ; \; \psi_2) \vdash \varphi}{\Delta(\psi_1 \land \psi_2) \vdash \varphi}$$
$$\Delta(\Delta_1 \; ; \; \Delta_2) \vdash \varphi$$

7

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{\Delta_1 \vdash \psi_1 \qquad \Delta_2 \vdash \psi_2}{\Delta_1 \; ; \; \Delta_2 \vdash \psi_1 \land \psi_2} \qquad \frac{\Delta(\psi_1 \; ; \; \psi_2) \vdash \varphi}{\Delta(\psi_1 \land \psi_2) \vdash \varphi}$$
$$\Delta(\Delta_1 \; ; \; \Delta_2) \vdash \varphi$$

$$\underline{\Delta_2 \vdash \psi_2} \qquad \underline{\Delta_1 \vdash \psi_1 \qquad \Delta(\psi_1 \ \mathbf{\dot{;}} \ \psi_2) \vdash \varphi} \\
\underline{\Delta(\Delta_1 \ \mathbf{\dot{;}} \ \psi_2) \vdash \varphi} \\
\underline{\Delta(\Delta_1 \ \mathbf{\dot{;}} \ \Delta_2) \vdash \varphi}$$

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{\Delta_1 \vdash \psi_1 \qquad \Delta_2 \vdash \psi_2}{\Delta_1 \; ; \; \Delta_2 \vdash \psi_1 \land \psi_2} \quad \frac{?}{\Delta(\psi_1 \land \psi_2) \vdash \varphi}$$
$$\Delta(\Delta_1 \; ; \; \Delta_2) \vdash \varphi$$

7

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{\Delta_1 \vdash \psi_1 \quad \Delta_2 \vdash \psi_2}{\Delta_1 \; ; \; \Delta_2 \vdash \psi_1 \land \psi_2} \quad \frac{\Delta(\psi_1 \land \psi_2) \; ; \; \varphi_1 \vdash \varphi_2}{\Delta(\psi_1 \land \psi_2) \vdash \varphi_1 \to \varphi_2}$$
$$\Delta(\Delta_1 \; ; \; \Delta_2) \vdash \varphi_1 \to \varphi_2$$

7

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{\Delta_1 \vdash \psi_1 \quad \Delta_2 \vdash \psi_2}{\Delta_1 \; ; \; \Delta_2 \vdash \psi_1 \land \psi_2} \quad \frac{\Delta(\psi_1 \land \psi_2) \; ; \; \varphi_1 \vdash \varphi_2}{\Delta(\psi_1 \land \psi_2) \vdash \varphi_1 \to \varphi_2}$$
$$\Delta(\Delta_1 \; ; \; \Delta_2) \vdash \varphi_1 \to \varphi_2$$

$$\frac{\Delta_1 \; \boldsymbol{\dot{;}} \; \Delta_2 \vdash \psi_1 \land \psi_2 \qquad \Delta(\psi_1 \land \psi_2) \; \boldsymbol{\dot{;}} \; \varphi_1 \vdash \varphi_2}{\Delta(\Delta_1 \; \boldsymbol{\dot{;}} \; \Delta_2) \; \boldsymbol{\dot{;}} \; \varphi_1 \vdash \varphi_2}{\Delta(\Delta_1 \; \boldsymbol{\dot{;}} \; \Delta_2) \vdash \varphi_1 \rightarrow \varphi_2}$$

Usually proofs of cut elimination involve analysis by inversion + terminating measure:

$$\frac{?}{\frac{\Delta_1 \; ; \; \Delta_2 \vdash \psi_1 \land \psi_2}{\Delta(\Delta_1 \; ; \; \Delta_2) \vdash \varphi}} \frac{?}{\Delta(\psi_1 \land \psi_2) \vdash \varphi}$$

etc..

• There are a lot of cases to consider, with a lot of syntactic details

- There are a lot of cases to consider, with a lot of syntactic details
- Well-foundedness/termination measures can get complicated

- There are a lot of cases to consider, with a lot of syntactic details
- Well-foundedness/termination measures can get complicated
- BI specific: the tree-like structure of bunches contribute to the complexity

- There are a lot of cases to consider, with a lot of syntactic details
- Well-foundedness/termination measures can get complicated
- BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are known to be error-prone.

- There are a lot of cases to consider, with a lot of syntactic details
- Well-foundedness/termination measures can get complicated
- BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some "universal" model $\mathcal C$ and the interpretation of sequent calculus in it.

$$\mathcal{C} \models \varphi \implies \vdash_{\mathsf{cf}} \varphi$$

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some "universal" model $\mathcal C$ and the interpretation of sequent calculus in it.

$$\mathcal{C} \models \varphi \implies \vdash_{\mathsf{cf}} \varphi$$

BI algebra

A BI algebra (C, \leq) consists of operations $\top, \bot, \lor, \land, \to$, Emp, *, -* satisfying various laws.

Soundness: $\varphi \vdash \psi \implies \llbracket \varphi \rrbracket \leq \llbracket \psi \rrbracket$.

Intuition: Lindenbaum-Tarski algebra for completeness

$$\text{Define } [\varphi] = \{\psi \mid \varphi \dashv \vdash \psi\} \text{, and } [\varphi] \leq_{\mathcal{L}} [\psi] \iff \varphi \vdash \psi \text{.}$$

$$\text{Define } [\varphi] = \{\psi \mid \varphi \dashv \vdash \psi\} \text{, and } [\varphi] \leq_{\mathcal{L}} [\psi] \iff \varphi \vdash \psi \text{.}$$

- $\mathcal{L} = \{ [\varphi] \mid \varphi \in \mathit{Frml} \}$ with $\leq_{\mathcal{L}}$ is a BI algebra;
- Main property of \mathcal{L} : $[\![\varphi]\!] = [\varphi]$.

$$\text{Define } [\varphi] = \{\psi \mid \varphi \dashv \vdash \psi\} \text{, and } [\varphi] \leq_{\mathcal{L}} [\psi] \iff \varphi \vdash \psi \text{.}$$

- $\mathcal{L} = \{ [\varphi] \mid \varphi \in \mathit{Frml} \}$ with $\leq_{\mathcal{L}}$ is a BI algebra;
- Main property of \mathcal{L} : $[\![\varphi]\!] = [\varphi]$.
- Completeness: suppose $\varphi \models \psi$.

$$\text{Define } [\varphi] = \{\psi \mid \varphi \dashv \vdash \psi\} \text{, and } [\varphi] \leq_{\mathcal{L}} [\psi] \iff \varphi \vdash \psi \text{.}$$

- $\mathcal{L} = \{ [\varphi] \mid \varphi \in \mathit{Frml} \}$ with $\leq_{\mathcal{L}}$ is a BI algebra;
- Main property of \mathcal{L} : $[\![\varphi]\!] = [\varphi]$.
- Completeness: suppose $\varphi \models \psi$.
 - In particular: $[\![\varphi]\!] \leq_{\mathcal{L}} [\![\psi]\!]$, i.e. $[\varphi] \leq_{\mathcal{L}} [\psi]$;

$$\text{Define } [\varphi] = \{\psi \mid \varphi \dashv \vdash \psi\} \text{, and } [\varphi] \leq_{\mathcal{L}} [\psi] \iff \varphi \vdash \psi \text{.}$$

- $\mathcal{L} = \{ [\varphi] \mid \varphi \in \mathit{Frml} \}$ with $\leq_{\mathcal{L}}$ is a BI algebra;
- Main property of \mathcal{L} : $[\![\varphi]\!] = [\varphi]$.
- Completeness: suppose $\varphi \models \psi$.
 - In particular: $[\![\varphi]\!] \leq_{\mathcal{L}} [\![\psi]\!]$, i.e. $[\varphi] \leq_{\mathcal{L}} [\psi]$;
 - Conclusion: $\varphi \vdash \psi$.

$$\text{Define } [\varphi] = \{\psi \mid \varphi \dashv \vdash \psi\} \text{, and } [\varphi] \leq_{\mathcal{L}} [\psi] \iff \varphi \vdash \psi \text{.}$$

- $\mathcal{L} = \{ [\varphi] \mid \varphi \in \mathit{Frml} \}$ with $\leq_{\mathcal{L}}$ is a BI algebra;
- Main property of \mathcal{L} : $[\![\varphi]\!] = [\varphi]$.
- Completeness: suppose $\varphi \models \psi$.
 - In particular: $[\![\varphi]\!] \leq_{\mathcal{L}} [\![\psi]\!]$, i.e. $[\varphi] \leq_{\mathcal{L}} [\psi]$;
 - Conclusion: $\varphi \vdash \psi$.
- The "real" work is to show that \mathcal{L} is indeed a model.

What if we use \vdash_{cf} instead of \vdash in the definition of \mathcal{L} ?

What if we use \vdash_{cf} instead of \vdash in the definition of \mathcal{L} ?

Need transitivity of \leq : $[\varphi] \leq [\psi] \leq [\chi] \implies [\varphi] \leq [\chi]$?

What if we use \vdash_{cf} instead of \vdash in the definition of \mathcal{L} ?

Need transitivity of \leq : $[\varphi] \leq [\psi] \leq [\chi] \implies [\varphi] \leq [\chi]$?

Same as cut elimination: $\varphi \vdash_{\sf cf} \psi \vdash_{\sf cf} \chi \implies \varphi \vdash_{\sf cf} \chi$

Attempted solution: use sets of predecessors.

$$\langle \varphi \rangle = \{ \Delta \mid \Delta \vdash_{\sf cf} \varphi \} \in \wp(\textit{Bunch}),$$

with the subset inclusion relation.

Attempted solution: use sets of predecessors.

$$\langle \varphi \rangle = \{ \Delta \mid \Delta \vdash_{\mathsf{cf}} \varphi \} \in \wp(\mathsf{Bunch}),$$

with the subset inclusion relation.

Note that $\varphi \in \langle \varphi \rangle$. Hence, $\langle \varphi \rangle \subseteq \langle \psi \rangle$ implies

$$\varphi \in \langle \psi \rangle \iff \varphi \vdash_{\mathsf{cf}} \psi.$$

Attempted solution: use sets of predecessors.

$$\varphi \vdash_{\mathsf{cf}} \varphi \rangle \varphi \rangle = \{ \Delta \mid \Delta \vdash_{\mathsf{cf}} \varphi \} \in \wp(\mathit{Bunch}),$$
 with the subset inclusion relation.

Note that $\varphi \in \langle \varphi \rangle$. Hence, $\langle \varphi \rangle \subseteq \langle \psi \rangle$ implies

$$\varphi \in \langle \psi \rangle \iff \varphi \vdash_{\mathsf{cf}} \psi.$$

Is $(\{\langle \varphi \rangle \mid \varphi \in \mathit{Frml}\}, \subseteq)$ a BI algebra?

Is $(\{\langle \varphi \rangle \mid \varphi \in \mathit{Frml}\}, \subseteq)$ a BI algebra?

Not closed under \cup , \cap ... Cannot inherit the algebra structure from $\wp(Bunch)$.

Is $(\{\langle \varphi \rangle \mid \varphi \in \mathit{Frml}\}, \subseteq)$ a BI algebra?

Not closed under \cup , \cap ... Cannot inherit the algebra structure from $\wp(Bunch)$.

Solution: close under arbitrary intersections:

$$\mathcal{C} = \{ \bigcap_{i \in I} \langle \varphi_i \rangle \mid I \text{ arbitrary set}, \varphi_i \in \mathit{Frml} \} \subseteq \wp(\mathit{Bunch})$$

Is $(\{\langle \varphi \rangle \mid \varphi \in \mathit{Frml}\}, \subseteq)$ a BI algebra?

Not closed under \cup , \cap ... Cannot inherit the algebra structure from $\wp(Bunch)$.

Solution: close under arbitrary intersections:

$$\mathcal{C} = \{ \bigcap_{i \in I} \langle \varphi_i \rangle \mid I \text{ arbitrary set}, \varphi_i \in \mathit{Frml} \} \subseteq \wp(\mathit{Bunch})$$

$$\begin{aligned} \operatorname{cl}(-) &: \wp(\mathit{Bunch}) \to \mathcal{C} \\ \operatorname{cl}(X) &= \bigcap \{ \langle \varphi \rangle \mid X \subseteq \langle \varphi \rangle \} \end{aligned}$$

Is $(\{\langle \varphi \rangle \mid \varphi \in \mathit{Frml}\}, \subseteq)$ a BI algebra?

Not closed under \cup , \cap ... Cannot inherit the algebra structure from $\wp(Bunch)$.

Solution: close under arbitrary intersections:

$$\mathcal{C} = \{ \bigcap_{i \in I} \langle \varphi_i \rangle \mid I \text{ arbitrary set}, \varphi_i \in \mathit{Frml} \} \subseteq \wp(\mathit{Bunch})$$

The smallest set in $\mathcal C$ containing X

$$\operatorname{cl}(-): \wp(\mathit{Bunch}) \to \mathcal{C}$$

$$\operatorname{cl}(X) = \bigcap \{ \langle \varphi \rangle \mid X \subseteq \langle \varphi \rangle \}$$

Is $(\{\langle \varphi \rangle \mid \varphi \in \mathit{Frml}\}, \subseteq)$ a BI algebra?

Not closed under \cup , \cap ... Cannot inherit the algebra structure from $\wp(Bunch)$.

Solution: close under arbitrary intersections

$$\mathcal{C} = \{ igcap_{i \in I} \langle arphi_i
angle \mid I ext{ arbitrary }$$

Lift operations to C:

$$X \wedge Y = X \cap Y$$

$$X\vee Y=\operatorname{cl}(X\cup Y)$$

$$X*Y=\operatorname{cl}(\{\Delta_1\ {}_{\!\raisebox{1pt}{\text{\circle*{1.5}}}}\Delta_2\mid \Delta_1\in X, \Delta_2\in Y\})$$

$$\mathsf{cl}(-):\wp(\mathit{Bunch}) o \mathcal{C}$$

$$\operatorname{cl}(X) = \bigcap \{ \langle \varphi \rangle \mid X \subseteq \langle \varphi \rangle \}$$

Is $(\{\langle \varphi \rangle \mid \varphi \in \mathit{Frml}\}, \subseteq)$ a BI algebra?

Not closed under \cup , \cap ... Cannot inherit the algebra structure from $\wp(Bunch)$.

Solution: close under arbitrary intersections

$$\mathcal{C} = \{ \bigcap_{i \in I} \langle \varphi_i \rangle \mid I \text{ arbitrary }$$

 $X \wedge Y = X \cap Y$ $X \vee Y = \mathsf{cl}(X \cup Y)$

$$X*Y=\operatorname{cl}(\{\Delta_1 \ {}_{\P}\ \Delta_2 \mid \Delta_1 \in X, \Delta_2 \in Y\})$$

$$\begin{split} \operatorname{cl}(-) : \wp(\mathit{Bunch}) &\to \mathcal{C} \\ \operatorname{cl}(X) &= \bigcap \{ \langle \varphi \rangle \mid X \text{ Satisfies } \llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket \implies \varphi \vdash_{\mathsf{cf}} \psi \end{split}$$

Lift operations to C:

Sum up

 \bullet Semantic proof of cut elimination through ${\cal C}$

Sum up

- \bullet Semantic proof of cut elimination through ${\cal C}$
- More modular proof

Sum up

- \bullet Semantic proof of cut elimination through ${\cal C}$
- More modular proof
- Extensions: structural rules, \square modality.

Coq formalization, ~650 lines specs and ~2500 lines proof

Coq formalization, ~650 lines specs and ~2500 lines proof

 \bullet Good representation for ${\cal C}$ makes life easier

```
Record C := {
  CPred :> Bunch → Prop;
  CClosed : .... }
```

Coq formalization, ~650 lines specs and ~2500 lines proof

ullet Good representation for ${\mathcal C}$ makes life easier

```
Record C := {
    CPred :> Bunch \rightarrow Prop;
    CClosed : .... }
```

• Setoids and setoid rewriting were helpful, useful type classes in stdpp

Coq formalization, ~650 lines specs and ~2500 lines proof

ullet Good representation for ${\mathcal C}$ makes life easier

```
Record C := {
    CPred :> Bunch \rightarrow Prop;
    CClosed : .... }
```

- Setoids and setoid rewriting were helpful, useful type classes in stdpp
- Turn equations $\Delta = \Delta'(\Gamma)$ into inductive systems ${\tt Inductive \ bunch_decomp : bunch \to bunch_ctx \to bunch \to Prop}$

Thank you

Thank you for listening!

Let me know if you have questions, d.frumin@rug.nl.